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Abstract

InfoSleuth1is an agent-based system for information discovery and retrieval in a dynamic, open envi-
ronment. This paper discusses InfoSleuth’s multibroker design and implementation. InfoSleuth’s broker-
ing function combines reasoning over both the syntax and semantics of agents in the domain. The broker
must reason over explicitly advertised information about agent capabilities to determine which agent can
best provide the requested services. Brokering in InfoSleuth is a match-making process, recommending
agents that provide services to agents requesting services. Robustness and scalability issues dictate that
brokering must be distributable across collaborating processes. Our multibroker design is a peer-to-peer
system that requires brokers to advertise to and receive advertisements from other brokers. Brokers col-
laborate during matchmaking to give a collective response to requests initiated by non-broker agents.
This results in a robust, scalable brokering system.

Keywords: Multibrokering, Semantic Matching, Facilitation, Multiagents, Information Agents, Heteroge-
neous Systems

1 Introduction

Distributed architectures partition the execution of tasks over processes spread out over a computer network.

A particular process passes off some subtask to another process either by sending it a message and waiting

for the response, or via a remote procedure or method call. The brokering function in a distributed system

matches a request for a specific service with a remote process that can perform that service. Both distributed

object systems and agent systems require the use of the brokering function. A broker or matchmaker is

a process that implements and executes the brokering function. In a brokered system, agents advertise

themselves to a broker, then the broker responds to queries about agents.

Now at Athens Group
This work was conducted while the author was on sabbatical leave at MCC

1The InfoSleuth Project ended June 30, 1997, and is currently in phase two, called the InfoSleuthII Project. Some of the work
described in this paper has come under the auspices of both projects. However, in the remainder of the paper we refer to both projects
as simply “InfoSleuth”.
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In this paper, we examine brokering from the perspective of tailoring it to add robustness, scalability, and

flexibility to either an agent community or a distributed object system. In a distributed object architecture

such as CORBA (Common Object Request Broker Architecture), a process can run a remote method by

first accessing a broker (e.g., a CORBA ORB) to determine which remote process offers the procedure or

method call. One basic assumption that these systems make is that the definition of the procedure or method

interface uniquely defines its semantics. That is, ORBs do not check to see if the local implementation

actually does what the caller intended.

Syntactic brokering uses the structure or format of a task specification to match a requester with a

service provider, matching requests to object interfaces or query/scripting languages to decide which service

providers to recommend. For example, “myRelationalQueryAgent” may advertise that it takes its input

according to SQL 2.0 syntax. Any request for SQL 2.0 query processing could then be directed to this

process. By this definition, CORBA currently provides syntactic brokering services.

Agent systems, like distributed object systems, offer the ability to partition the execution of a task

over several processes distributed across a network. The InfoSleuth agent system [2, 7, 18] adds semantic

brokering functions to complement the syntactic brokering process. Semantic brokering uses the intended

operation and accessed information of the request to match it with the meaning of the offered services of

the providing agent. Introducing the notion of semantic brokering allows a broker to recommend services

based on the semantics that define the sub-task. For example, “myRelationalQueryAgent” might advertise

or register with the broker that it has the capability to do query processing of relational algebra queries, but it

cannot do any statistical aggregation within those queries. Any time some other agent requires a query to be

run over some known set of relational data, and the query fits those constraints, myRelationalQueryAgent

could be tapped to do the job.

Brokering can be provided by a single process or agent that saves all agent advertisements, and processes

all requests for services. In our experience, this architecture works well for an agent system with dozens

of agents. However, the single broker approach presents a single point of failure and a limit to scalability,

especially as we envision an open agent system containing agents with differing capabilities and varying

levels of intelligence. In InfoSleuth, we implemented a multibrokering approach where many (specialized)

brokers collaborate to provide brokering services. We show that our multibrokering approach increases the

robustness and scalability of InfoSleuth without compromising performance.

The remainder of this paper is organized as follows. In the following sub-section, we briefly review

InfoSleuth, our agent-based information discovery and retrieval system where multibrokering is a core

function. In Section 2 we discuss the nature of the brokering process that matches a service requester

with a service provider. We argue that the brokering process is insufficient unless it incorporates both

the semantics of the request and the syntax in which the request is made. Sections 3 and 4 describe

important multibrokering principles and how they are implemented in InfoSleuth. In Section 5, we discuss

the experiments that we conducted to confirm the robustness and the scalability of our multibrokering
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approach. Finally, we discuss related work in Section 6 and conclude in Section 7.

1.1 InfoSleuth

The InfoSleuth system consists of a set of collaborating agents that work together for information discovery

and retrieval in a dynamically changing environment such as the World Wide Web. Some typical InfoSleuth

information gathering and analysis examples are:

Notify me when the cost of hospital stays for a Caesarian delivery significantly deviates from the

expected cost.

Notify me when my competitors have many more news articles about object-oriented databases than

normal.

Tell me when the following pattern of unexpected events occurs over these different computers, as it

may indicate an unauthorized intrusion.

The above complex queries cannot be performed by currently available search engines or multidatabases.

They cannot be parsed by search engines because they deal with information at a semantic (rather than

keyword) level, and also are specified over multimedia information sources. Similar problems occur with

multidatabases, because the information may not be kept in database systems. Also, these queries deal with

trends and collections of information. Thus, a more integrated, semantically-based, multimedia approach is

required.

The strengths of InfoSleuth are that it can adapt to a wide range of information retrieval and analysis

tasks, and that it can also adapt itself to changes in the availability and capability of the different agents in

a given InfoSleuth community. Some of the types of retrieval and analysis tasks include:

gathering information via complex queries from a changing set of databases and semi-structured text

repositories distributed across an internet,

performing polling and notification for monitoring changes in data,

analyzing gathered information using statistical data mining techniques and/or logical inferencing,

and

noticing patterns in how information is changing that may indicate new trends or problems.

In addition to offering such a broad spectrum of information services, InfoSleuth communities also must be

able to adapt to changes in their composition, including the addition, removal, or changing capabilities of

agents, users, and information resources. Much of this adaptability is accomplished by the use of semantic

brokering.

Figure 1 depicts the InfoSleuth agent architecture currently defined and deployed in InfoSleuth.
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Figure 1: InfoSleuth: Dynamic and Broker-based Agent Architecture

The InfoSleuth agents are organized as core agents (those enclosed by the cloud) that provide basic

information subscription, filtering and fusion capabilities, resource agents (those appearing to the right of

the cloud) that serve as interface to external information sources, and user agents (those appearing on the

left of the cloud) that act as proxies for individual users or groups of users.

In a given community of InfoSleuth agents, the core agents (broker agent, task planning agent, multire-

source query agent, data mining agent, ontology agent) work together to connect users with the information

resources that they need. These agents service requests over a set of common ontologies, accessed via the

ontology agents.

One key element of an InfoSleuth community is its ability to adapt to the changing composition of the

agents that make up the community. InfoSleuth uses a sophisticated brokering process to match agents to

different parts of the information retrieval and analysis tasks posed by its users. In the following section,

we discuss this brokering process and indicate how it helps to enhance the flexibility and robustness of the

agent community.

2 Brokering

In this section, we discuss the combined syntactic and semantic-based brokering in InfoSleuth. We also

describe a common service ontology that allows specification of both syntactic and semantic knowledge for

agents to advertise to or query the broker.

2.1 Broker Agents

The broker agent maintains a knowledge base of information that other agents have advertised about them-

selves, and uses this knowledge to match agents with requested services. For instance, a number of different

agents may advertise that they can answer data requests in SQL. However, one agent may advertise that it
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contains a wealth of information about the healthcare domain, another that it is familiar with the aerospace

industry, and yet a third that its sole function is to do complex query processing to assemble related infor-

mation from different sources. When an agent requests resources that speak SQL and contain healthcare

information, the broker’s task is to return only the potentially relevant resources, in this case ruling out all

but the agents that have healthcare information. Another important function the broker provides is to do

some reasoning on constraints on the information content of an agent. If for instance, an agent has adver-

tised that it knows about the healthcare domain model, it can also advertise the fact that its subsection of

the domain model is restricted to podiatrists in Dallas and Houston. If the broker receives a request for

information resources that do not overlap this sub-section of the healthcare domain, it will not recommend

this agent.

The reasoning engine of InfoSleuth’s broker agent is unique in that it can reason over different kinds of

constraints expressed over the service ontology. For example, it can return all matched slots from classes

that are fragmented. It can reason over class-subclasses and derived concepts relationships. The latter is

particularly important because both content and capabilities are often represented hierarchically according

to containment relationships. For example, if an agent does all query processing, then it certainly does

relational query processing and could process a simple select query over a single relation. However, just

because an agent can process a simple select query does not mean that it can do any relational query. We

can represent a partial hierarchy of query capabilities as shown in Figure 2.

Relational Object-Oriented

Select

Query Processing

Project Join Union

Figure 2: A Capability Hierarchy for Query Processing

2.2 The Brokering Process in InfoSleuth

The broker agent provides a matchmaking service to the InfoSleuth agents, matching agents that require

services from other agents with agents that can provide those services. One of the primary jobs of a broker is

to maintain a repository containing current and correct information about operational agents and the services

they can provide. When an agent comes online, it announces itself to some broker by advertising to it, using

the terms and vocabulary described in its service ontology (see Section 2.3). This is shown in Figure 3. The

broker stores all of the advertised information in its repository. When an agent’s set of available services
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changes, the agent may update its advertisement, and the broker will update the information in its repository.

When an agent goes offline, it first unregisters itself from the broker. Also, the broker periodically pings

each of the agents that have advertised to it, to discover any agents that have failed. The broker removes

from its repository all information about agents that have failed or unregistered themselves.

putBROKER
AGENT

1 2

Broker
Repository

advertise
ADVERTISING

AGENT

Figure 3: Advertising to the broker

BROKER
AGENT

Broker
Repository

3 results

get2

4 reply
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QUERYING
AGENT

Figure 4: Querying the broker

Brokers also receive queries from agents that are looking for other agents that can provide specific ser-

vices. These queries are specified in terms of the service ontology. The broker uses a rule-based reasoning

engine implemented in LDL [25] to reason over the query and advertisements to determine which agents

have advertised services that match those requested in the query. This set of matching agents found by the

reasoning engine is returned by the broker to the requesting agent. This process is shown in Figure 4.

In InfoSleuth, the broker agents play a critical role in maintaining an up-to-date repository of all of the

agents available for access within an agent system. Without the presence of brokers (or other agents that

have similar capabilities), an agent would be unable to locate new agents that could provide services to

it. This locational task is critical either in the case where the agent knows about no other agents that can

provide a needed service or in the case where an agent is looking for all agents that can provide a service.

For instance, when the agent system’s purpose is to provide information, the broker is needed to ensure that

all available agents that can contribute information are located, even in a system where such agents may

come on- and off- line frequently.

To illustrate this, we will show how the brokering is used to process a simple query over multiple

resources in a single broker system. As each agent comes online, it advertises its capabilities as shown in

Figure 5. Thus, after the actions in this figure, the broker has a repository containing four advertisements,

one for each of agents ”mhn’s user agent”, ”MRQ agent”, ”DB1 resource agent” and ”DB2 resource agent”.

At some point in time, user ”mhn” submits the SQL query ”select * from C2” to her user agent. At

this point, ”mhn’s user agent” must locate a query processing agent that can assemble all of the information

that this community knows about class ”C2”, as shown in Figure 6. In this figure, ”mhn’s user agent”

first forwards a query to the broker agent for one multiresource query processing agent that can accept and
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Figure 5: Agents advertising to the broker

process SQL queries. The broker replies, stating that ”MRQ agent” fits the description in the request. The

user agent then forwards the query to ”MRQ agent”.

When agent ”MRQ agent” receives the query from the user agent, it looks at the query to determine

which classes are required to answer the query, and discovers that it needs to look for class ”C2”. It then

queries the broker for all resource agents that can answer an SQL query involving class ”C2”. This is

shown in Figure 7. The broker processes the query and returns the responses ”DB1 resource agent”, ”DB2

resource agent”. ”MRQ agent” then forwards a query to these two agents, receives the responses, assembles

the result, and forwards it back to ”mhn’s user agent”. Note that if the original query had been for class

”C3”, then only the response ”DB2 resource agent” would have been returned tot ”MRQ agent”.

Let us assume for the moment that a new agent, ”MRQ2 agent” comes online and advertises to the

broker, stating that it is a multiresource query agent that speaks SQL and specializes in queries over the

class ”C2”. If now user ”mhn” poses the same query to her user agent, then agent ”MRQ2 agent” would be

recommended to the user agent because it has a better semantic match to the request than does agent ”MRQ

agent”.

2.3 Brokering Knowledge

Syntactic brokering is the process of matching requests to agents on the basis of the syntax of the incoming

messages. A classic example of syntactic brokering is found in CORBA (Common Object Request Broker

Architecture) [9], which locates processes that can execute a method call that has a specific signature defined

in its Interface Definition Language. In the agent-based community, KQML (Knowledge Query Manipula-

tion Language) [23] specifies agent advertisements as templates for KQML messages representing requests
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for services. Requesting agents must send request messages that effectively “fill in” these templates in or-

der for the request to match the advertisement. This approach also relies only on syntactic-level brokering.

Figure 8 lists some of the syntactic information that the broker may use.

Agent name and location

Unique identifier for the agent

Directions on how to contact the agent (host, port, transport protocol)

Agent type (e.g., query agent, resource agent)

Agent syntactic knowledge

Communication languages/services (e.g., CORBA)

Content languages (e.g., SQL, LDL)

Figure 8: Syntactic agent service ontology information

In a general agent system, brokering needs to take into account knowledge beyond the syntactic consid-

erations. Consider the following case: A query packaged in a KQML’s ask-all performative enters the agent

community and is passed to the task execution agent for task planning. This agent takes the user context

and the query, and plans the general execution of the query. This plan includes deciding where to forward

the query for processing and whether to cache the result or analyze it. The same query is then forwarded in

the same performative to the multiresource query agent (MQA), which decides whether or not the query in-

volves data from multiple resources. If it only involves one resource, the MQA will forward the same query

in the same performative to the resource agent, which runs the query against its database and returns the

results. Here, we have three different agents taking the same performative as input (i.e., the same interface),

but doing quite different things with the embedded query. Thus, the syntactic information contained in the

ask-all performative is not enough to decide at which point in the processing the agent should receive

the query – the broker agent must also understand whether the agent’s semantics for the performative match

the current requirements.

Semantic brokering is the process of matching requests to agents on the basis of the requested capabili-

ties or services, and/or (in an information system) constraints on the information that an agent can provide.

This agent knowledge is expressed independently of syntax, using the common service ontology. Figure 9

lists some of the different semantic information that the broker may use.

As with syntactic brokering, semantic brokering in and of itself is not sufficient for correct assignment

of agents to requests. Consider a case where there are multiple query processing agents, all of which process

queries specified in languages that are based on relational algebra, but one agent expects its input in SQL,

while the other expects its input in a relational subset of OQL (Object-oriented Query Language). In this

case, the semantics are not sufficient to distinguish which agent to select for processing a specific relational

query.

In InfoSleuth, we take into account both syntactic and semantic brokering knowledge when matching

service requests to agent advertisements. This is because, if a broker fails to take into account syntactic
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Agent capabilities

Conversation types the agent can participate in (e.g., ask-all, subscribe, emergent)

Agent’s functionality (e.g., O-O query processing)

Restrictions on those capabilities (e.g., multimedia joins, vertical fragmentation)

Agent content

Supported ontologies (e.g., healthcare)

Restrictions on ontologies (e.g., patients over 65)

Agent properties

Adaptivity (e.g., cloneable, mobile)

Processing statistics (e.g., throughput, estimated processing time)

Figure 9: Semantic agent service ontology information

constraints, the recommended agent will be unable to understand the message it receives. If a broker fails to

take into account semantic constraints, the recommended agent may perform some action different than the

one intended. Specifications such as CORBA and KQML that define purely syntactic brokering make the

assumption that syntax implies semantics - an assumption that fails as the agents become more and more

autonomous. We also may take into account additional pragmatic properties like the processing capacity of

the agent or its ability to move.

2.4 An Example

In this section, we show an example of how an advertisement and a query to a broker are specified using

the InfoSleuth service ontology described above.

Resource agents are the back-end agents within InfoSleuth which act as proxies for structured or semi-

structured repositories. A resource agent, let’s name it “resourceAgent5”, can send an advertisement to the

broker with the following content:
Agent name and location

agent address: tcp://b1.mcc.com:4356
agent name: ResourceAgent5
agent type: resource

Agent syntactic knowledge:
agent interface query language: SQL 2.0
agent communication language: KQML

Agent capabilities:
supported conversations: subscribe, update, ask-all
capabilities: relational query processing, subscription

Agent content:
supported ontology name:healthcare
supported ontology classes: diagnosis, patient
supported ontology slots: diagnosis-code, patient-age
supported class key: patient-id
constraints description:patient age between 43 and 75

Agent properties:
properties:non-mobile
estimated response time:5

The advertisement above tells the broker that the sending agent can be contacted via the tcp trans-

port protocol at port 4356, on the host machine b1.mcc.com, using KQML as the inter-agent message
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exchange language, and accepting SQL 2.0 queries. Under the semantic knowledge category, it specifies

that the agent can perform relational query processing. It accepts subscriptions (i.e.,

allows the user to monitor certain events or changes in data). It has knowledge about the fragment of the

healthcare domain model that deals with diagnosis and patient classes and the patient data is

restricted to patients between the age of 43 and 75. It is a non-mobile agent and can

return the answer within 5 seconds.

Upon receipt of this advertisement, the broker validates and translates the advertisement into a format

that its reasoning engine can understand and asserts it in its repository. The content of an ask-all query

to the broker to find which resource agents can answer QueryAgent2’s request for patients between the age

of 25 and 65 with diagnosis code 40w is shown below:

Agent name and location:
agent address: ?agent-address
agent name: ?agent-name
agent type: resource

Agent syntactic knowledge:
agent interface query language: SQL 2.0

Agent content:
ontology name: healthcare
ontology classes: ?available-classes
ontology class slots: ?available-class-slots
ontology class keys: ?class-keys
data constraints: (patient age between 25 and 65)

AND (patient.diagnosis code = ’40W’)
Agent properties:

estimated response time: ?response-time
Result format:

?agent-address, ?agent-name, ?class-keys
?available-classes, ?available-class-slots
?response-time

The information that is being queried for is specified in the result format clause. The syntactic or

semantic information that the agent does not care about is not specified in the content. The semantic infor-

mation that this agent is particularly interested in is the contents (healthcare) and its data constraints

(patients between the age of 25 and 65, diagnosis code 40W).

The reasoning engine matches the constraints on agent type, agent interface query language, ontology

name, and data constraints with the advertisements that it has stored. Note that the reasoning engine would

match the agent that advertised knowledge about patients between 43 and 75 (i.e., ResourceAgent5).

3 Multibrokering

Multibrokering allows the process of matching service agents to requests to be distributed across multiple

brokers, each representing a different set of agents. That is, brokers collaborate with each other in making

recommendations to requesting agents for specific services that other agents have advertised. When a broker

receives a request for an agent with specific capabilities, it looks for matches in its own repository of agent

information and may also query other brokers to find external agents with needed capabilities.

In this section, we discuss the limitations of single broker systems, and present some principles required
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Figure 10: Single Broker Architecture

for building a multibrokering system. These multibrokering principles include methods for brokers to ex-

change information in a collaborative peer-to-peer fashion rather than arranging themselves hierarchically,

organization of information about both agents and other brokers, proposed methods for discovering brokers,

and policies for initiating inter-broker searches.

3.1 Single Broker Architecture

In a single broker architecture, the broker is the central repository for information about available agents and

resources in the system. Rather than caching information about the entire system, when agents come online

they need only know the location of the broker and how to query it for information to locate other agents

in the system. Each agent then advertises itself to the broker and queries the broker when it needs to locate

other agents. The single broker architecture and its relationship to the InfoSleuth agents that advertise and

query to it is illustrated in Figure 10. In this view of the system, there are eight resource agents (beer1-4,

rabfA1-4) advertised to the broker and three requesting agents who queried the broker.

A single broker represents a single point of failure. If the broker cannot be located, no inferencing on

the data domain can be performed and the agents in the community will be unable to locate other agents

accurately. A single broker system also represents a hard limit to scalability. While a single InfoSleuth

broker can easily keep track of dozens of agents participating in the system, there is no doubt that at some

point when a single broker trying to store and process information about thousands of agents will be unable

to respond in a reasonable amount of time.

3.2 Principles for Multibrokering

The major goals of multibrokering center around robustness, flexibility and scalability. With multiple bro-

kers, processing load can be more evenly distributed around the system. In the current system, the knowl-

edge processing must be handled by one centralized broker which must know how to reason about all

domains. Allowing for multiple brokers allows for parallel development of more precise reasoning over
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narrower domains.

Peer-to-peer Architecture. We use a peer-to-peer topology for inter-broker connectivity. Since this

allows any broker to freely advertise/unadvertise to any other broker in the system, it is more scalable.

More importantly, this topology ensures that there isn’t a single point of failure.

A hierarchical architecture for multi-brokering, in which one broker plays the role of “super-broker”, has

the same robustness and scalability problems as single-broker systems. First, the super-broker represents a

single point of failure. Second, when the load on the super-broker becomes too large, the old super-broker

must split into two brokers and a new super-broker added at the top. Hierarchical brokering represents a

postponement of, rather than a solution to, scalability. Peer-to-peer brokering circumvents these scalability

issues. So long as brokers may freely advertise and unadvertise themselves to other brokers , entry to and

exit from the group of brokers is easy. Newly advertised brokers’ data will be integrated into each new

search as if the data had always existed, and brokers which have unadvertised themselves will simply cease

to exist so far as the rest of the system is concerned.

The only major disadvantage of a peer-to-peer architecture is the cost of inter-connection. When the

number of brokers become very large, the connectivity cost could be significant. However, we may be able

to reduce the connectivity cost on a per-search basis by only propagating requests along a spanning tree of

the current broker digraph.

Non-broker agents must advertise.

Non-broker agents must advertise their capabilities to at least one broker. Robustness increases if agents

advertise redundantly to several brokers. This ensures that an agent is still available if one of the brokers

it has advertised to goes down. It is the agents’ responsibility to ensure that the different copies of their

advertisements are kept consistent in all the brokers to which they advertise.

In a multibroker system, we need to also define how a non-broker agent connects to the broker(s). In

theory, it is possible for every non-broker agent to connect or advertise to every broker in the system. This

would be very robust, but is impractical for large numbers of agents and brokers.

Brokers may specialize. In a world with multiple systems and brokers interoperating, an agent should

take care to ensure that it advertises to brokers that best represent its interests. For example, if a food sup-

plier agent advertises to a broker that only brokers healthcare information, the broker should forward it to

a broker that can deal with food suppliers. If no such broker exists, it may reject the advertisement. With

this approach, the brokers will need metrics to measure how well the advertisement fits within the broker’s

advertised purpose. When brokers specialize in certain domains, it is possible to develop optimized reason-

ing over a narrower domain and hence lead to better performance when the number of agents and brokers

becomes very large. To prevent the possibility of all brokers rejecting some agent whose advertisement fits

in with no broker, each group of cooperating brokers should contain at least one general-purpose broker for

queries not covered by the specialized brokers.
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3.3 Multibroker Architecture

In a multibroker environment, a broker not only keeps information about other agents in its repository, it

also keeps information about other brokers that it knows about. Brokers are connected in a directed graph

structure, with the nodes representing brokers and the arcs representing knowledge of other brokers’ current

advertisements. Thus if Broker1 has advertised itself to Broker2, there is an arc from Broker2 to Broker1.

The connectivity should be sufficient to ensure that each broker is either directly or indirectly connected to

all the other brokers in the system (i.e. no disconnected sub-network of brokers).

CollaborativeReasoning. Each broker maintains, in addition to its repository of advertised agent informa-

tion, a reasoning engine that matches queries to its own set of agent advertisements. This reasoning engine

may also match broker queries to other brokers that may contain advertisements for other agents that can

service the query. Each broker request is forwarded to relevant other brokers, which then may propagate the

requests further. The response to the broker query contains the union of all agents which have advertised to

some broker that the broker query reached, and which match the request. Searches are restricted internally

to prevent undesirable propagation of requests, e.g., cyclical propagation and prolonged search in a very

large system.

A broker consortium is a set of brokers that are fully interconnected, such as the one shown in Fig-

ure 11. This figure shows four brokers with eight resource agents, and some user and query processing

agents. When Broker1 receives a request, it analyzes the content and uses the rules in its rule base to reason

over its agent repository for any possible matches. It also initiates an inter-broker search (if asked by the

requesting agent using the search policy option). If the search policy is to always expand the search to other

brokers, Broker1 will forward the request simultaneously to all the other brokers that it knows about (Bro-

ker2, Broker3, Broker4). Each of these brokers then use the same procedures as were used by Broker1 to

match for potential agents that can provide the requested service. Eventually, the other brokers return their

results to Broker1, which combines them with its own (possibly empty) list of providing agents, eliminating

duplicated entries. Broker1 then returns the combined list to the requesting agent.

Consortia may be configured explicitly, or may form naturally among brokers whose agents share a

common set of goals or interests. A given broker may belong to more than one consortium; therefore, a

set of interconnected brokers that can collaborate takes the form of a connected network of broker consor-

tia. Figure 12 shows interconnection of several consortia of brokers. Note that in both diagrams we use

bidirectional arrows between brokers that know about each other.

Multibroker Service Ontology. In Section 2.3, we described a service ontology that non-broker agents

use for advertising and querying the broker. Under a multibroker architecture, we need to expand that

ontology to allow brokers to specify their broker reasoning capabilities and their specializations, as well as

their inter-broker communication abilities to other brokers.

For the most part, broker advertisements should be specified against the same ontology as the agent
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Figure 11: Multibroker architecture

advertisements. However, the ontology may need to be extended to take care of such items as the broker’s

consortium memberships and the types of agents the broker has in its repository. Figure 13 shows example

extensions of the service ontology with respect to multibrokering capabilities:

4 Implementation of Multibrokering

Aspects that are crucial to the robust implementation of a multibroker system include:

1. integrating new agents and brokers into the broker network,

2. ensuring all brokers and agents remain interconnected, and

3. ensuring that the brokers process queries collaboratively and thoroughly.

4.1 Discovering Brokers

In this section, we briefly outline a broadcast approach for agents and brokers to use to locate (other)

brokers. With this approach, each broker is a member of at least one consortium. The consortia overlap

their membership in such a way that they all interconnect. A broker advertises its location and capabilities

to all the other brokers in each of its consortia. By default a broker must advertise at least its locational

information. However, when a broker also advertises its capabilities to another broker, a broker can reason

over the other brokers’ capabilities and eliminate brokers that definitely should not be contacted during an

inter-broker search. This improves the processing time by ruling out unnecessary queries.

Broker Objectives and Advertisements. With independent brokers, each broker may have a specific

objective for the type of agent information it maintains. This objective is reflected in the capabilities that
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Figure 12: Interconnected consortia of brokers

it advertises to other brokers. Additionally, a broker should be able to determine what advertisement it

is willing to accept in an open agent system based on its objective. If the objective of a broker is to

provide services to a wide variety of requesting agents, then it should accept as many non-overlapping

advertisements as possible. If the objective is to develop a specialty in brokering over certain chosen

domains, then it should only accept advertisements that overlap with its chosen domains. A broker may

also modify its objective based on, for instance, an analysis of the queries it is receiving.

Brokers Discovering Other Brokers. When a new broker starts up, it needs to know which broker

consortia it wishes to join. This may be specified either via the broker’s configuration parameters, or may

be implicitly specified using a well-known port for each consortium. Once that is identified, it can advertise

to all the brokers in each such consortium. The new broker may also query the other brokers it has advertised

to for their lists of broker advertisements that may fit its own specialization, so that it can select and pull

interesting advertisements into its own repository.

A broker receiving an advertisement may accept or reject it, or pass it on to other potentially-interested

brokers. The sending broker will receive a confirmation message from any broker that accepts its adver-

tisement. If no brokers accept the advertisement, the broker that received the original advertisement will

reply with a sorry message. The sending agent may then try to locate other brokers via some external

mechanism such as published lists or bulletin boards.

Agents Discovering Brokers. Each non-broker agent is configured with one or more preferred brokers to

connect to on startup. This represents its initial entry point(s) into the brokering system.

Once operational, the agent may decide to change to a different broker. To do this, it sends a query to
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the preferred broker for one or all of the brokers that are available in the system with the capabilities and

data domain that it is interested in. It then picks one in the list to use. Alternatively, the agent might use the

preferred broker and keep a history of how this broker handles its request. If over a period of time, the user

discovers that its preferred broker always forwards the request to a specific broker or set of brokers, then he

could reconfigure his agent to add the new broker to its list of preferred brokers.

4.2 Maintaining Connectivity

Redundant advertising and robust connectivity are keys to maintaining a reliable network of brokers.

4.2.1 Redundant Advertising

Redundant advertising is the practice of agents and brokers making identical advertisements of their services

to more than one broker. Every agent or broker maintains a configuration parameter defining how many

brokers that agent or broker should advertise to. In addition all agents, including broker agents, keep track

of two lists of brokers: a list of brokers that they know about (known-broker-list), and a list of brokers

they have successfully advertised to (connected-broker-list). The connected-broker-list is a subset of the

known-broker-list.

Each agent or broker advertises to brokers on the known-broker-list but not on the connected-broker-

list. When an advertisement is successful, the broker that kept the advertisement is added to the connected-

broker-list. Once the number of such connected brokers reaches the configured number of redundant adver-

tisements, the advertisement process stops.

In the event that a broker should unexpectedly leave the agent community, it is the responsibility of

each agent to detect that the broker has left and re-initiate the advertising process. In the meantime, given

that there was a redundant advertisement, the agent will still be visible to other agents in the system via the
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remaining brokers that it has advertised to.

During operation, an agent may also discover more brokers that it deems appropriate to advertise to. In

this case, the agent adds them to its known-broker-list.

4.2.2 Robust Connectivity

Agents periodically test to see whether all of the brokers they have advertised to still know about them. At

some (configurable) periodic interval, agents will cycle through the connected-broker-list, and query each

broker in turn to see if it still knows about them. We call this a “broker ping”.

If the broker has died, either the transport layer will fail to make the connection to the broker or the

broker will fail to respond. In either case, the transport layer of the agent detects this, and the broker ping

fails. In the event that a broker is alive but does not have information about the agent that is doing the

querying, the broker will receive a reply containing no matches from the broker that it queried, and it will

remove this broker from its connected-broker-list.

Once an agent has successfully traversed its connected-broker-list, it checks to see if it needs to re-

advertise, as described in the previous section. If so, it re-initiates the advertisement process. If at the end

of the re-advertisement the agent is connected to no brokers, the agent will enter a dormant state and wait

until the next polling interval and attempt to reconnect.

4.3 Broker Query Processing Policies

Given that we can locate other brokers, the question remains as to when to start looking at other brokers

when processing a brokering request. Suppose a broker gets a request for information about database

resources dealing with the healthcare industry in Dallas, Texas, but finds that it doesn’t have any information

stored about agents that would meet these particular criteria. The requesting agent can then specify the

policies under which it wishes for the broker to initiate an inter-broker search. This policy needs to be

passed along when one broker forwards a message to another broker. If the requesting agent did not specify

any policy, the default policy set by a broker will be used.

Our implementation of the inter-broker search policy follows closely those defined for the trading ser-

vice in CORBA [20]. It is a property list consisting of the following items:

hop count - this is the maximum number of hops between brokers that the request will traverse. It

can be overridden by the broker’s max hop count. The default is set to one, which limits the search

to the broker’s own consortium and other directly-connected brokers.

follow option - this indicates whether the matchmaking process should only consider the local bro-

ker’s repository, or all repositories, or as many repositories as are needed to find a single match. If

the request is for a single agent, this defaults to the “until you find a single match” policy; otherwise

it defaults to the “all repositories” policy.
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When a broker forwards a request to a second broker and a second broker forwards that request to a

third broker and the third broker passes it on again, the request might end up back where it started. To

prevent such a loop, we keep a list of brokers that a request has been forwarded to and pass this list along

with the message.

5 Experimental Results

This section presents two types of empirical evaluations of InfoSleuth’s multi-brokering mechanisms. In

Sub-section 5.1 we present some experiments done using the InfoSleuth system directly. However, because

running multiple, large-scale experiments with InfoSleuth poses some difficulty, in 5.2 we present some

simulation-based results.

5.1 Multibrokering behavior in InfoSleuth

We performed a set of experiments using the InfoSleuth system to determine if multibrokering was feasible

and if specialization helps. We also did some limited tests on scalability.

We tested the response time for queries under different configurations of resource agents, number of

brokers, number of query agents and user agents. Each experiment consisted of issuing SQL statements

(encapsulated in KQML messages) to an InfoSleuth agent community and processing them according to

the procedure described in Section2.2, The response time is the total time for the user to get the result

displayed on the screen from the time the query is submitted. This includes CPU, disk I/O, communication

among agents and graphical display of results.

Table 1: Experimental Query Streams

name # RAs2

SA (single agent) 1
DA (double agent) 2
4A (four agent) 4
VF (vertical fragmentation) 4
CH (class hierarchy) 4
FH (fragmentation & class hierarchy) 4

The types of queries submitted are characterized in Table 1, and are representative of the majority of

the types of queries that InfoSleuth currently handles. We use the query streams shown in Figure 2 for

running the queries. In this multibroker case, each broker is running on a different Sparc Ultra 1 machine.

The single-broker variant of each experiment has all the agents running on a single broker on a single Sparc

Ultra machine. All of the Sparc Ultra 1 machines were running the SunOS 2.5 operating system.

All queries are executed by a single query agent.

Each experiment is repeated 3 times. Table 3 shows the average response time expressed as a ratio of

multibroker/single broker for each of the above type of queries. A ratio of less than 1.0, implies improved
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Table 2: Experimental configurations

Expt SA DA 4A VF CH FH #RAs
1 4
2 4
3 8
4 12
5 16

performance of multibrokering over single brokering.

Table 3: Experimental results

Expt 4A DA SA VF FH CH
1 1.00
2 1.04 1.05 1.01
3 1.12 1.01 1.05 0.85
4 0.98 0.95 0.91 0.77 0.86
5 0.3 0.31 0.47 0.76 0.63 0.67

When the system is underloaded (Experiment 1-3), the response time for queries is slightly better in

a single broker versus a multibroker system (the ratio is greater than 1.0). However, the difference is less

than 0.1 in most cases. Thus we can conclude that the response time for a query did not degrade with an

increased number of brokers. On the other hand, when the system is loaded (Experiment 4-5), the response

time in multibroker systems is better for all the queries.

We also conducted a sixth experiment to check the effect of specialization of brokers in a multibroker

environment. This experiment used the same agents and query streams as Experiment 5, but with all the

resources associated with a given query stream kept at a single broker. Table 4 shows the average response

time expressed as a ratio of multibrokering with specialization/multibrokering without specialization.

Table 4: Experiment 6 Results

Expt 4A DA SA VF FH CH
6 0.86 0.86 0.87 0.74 0.6 0.29

This experiment shows that there is an improvement in response time for all the above type of queries

with specialization of brokers (ratio less than 1.0). Intuitively, this is because the individual brokers reason

over less information, and therefore the reasoning is more straightforward and less costly.

5.2 Simulation-based Experiments

There are many obstacles involved with running large scale experiments using actual agent applications,

many of which we experienced while conducting the experiments of the previous sub-section. The mecha-
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nisms for managing very large numbers of agents do not exist in the current InfoSleuth system nor do they

exist in any other agent system at present. This makes the set-up, execution, monitoring and result gath-

ering for the experiments extremely difficult, especially as the number of agents to be managed increases.

Additionally, to run experiments with hundreds of agents requires enough resources for all the agents to

run; including both hardware and time. Furthermore, if these are real agents, they will each need to be

configured, possibly requiring fabricating enough data for all the agents to use. Another factor in trying to

evaluate an isolated portion of the InfoSleuth system, which is a complex prototype, is that non-essential

components with less than optimal implementations can degrade the performance to the point where it

masks the true impact of the system characteristic being evaluated. Finally and more generally, evaluation

of agent system properties is often desired at design-time before any application exists.

A simulation-based approach to evaluating an agent system overcomes all of these obstacles. A simu-

lation gives complete control over all of the agents; it doesn’t need to run in real time; each agent requires

far fewer resources; there is no need for real data; and you can model only the relevant characteristics that

affect the performance of the system, eliminating any negative effects caused by non-critical components.

At present, the resource constraints have made it very difficult to run controlled experiments in the ex-

isting InfoSleuth system, especially when there are more than a few dozen agents. Because of this and the

desire to demonstrate that multi-brokering is robust and can scale up to non-trivial numbers of agents, we

have used a simulation-based approach for evaluation. The agent simulation is built upon a discrete-event

simulator, modeling both machine characteristics and network connections. The broker behaviors were im-

plemented to closely mimic the behaviors of the brokers in the actual InfoSleuth system. Below, we present

a broad overview of the simulator, since space constraints of the paper prevents a more comprehensive

description.

There were fewer types of agents used in the simulation experiments than were used in the InfoSleuth

experiments. Since we wanted to focus on the broker characteristics, we limited the types to broker, resource

and query agents. The query agents are simply a mechanism for putting a load on the brokers, while the

resource agents simply defined the amount and type of information the brokers have to reason about. The

focus of the experiments is on the performance of the brokers under various configurations.

5.2.1 The Simulator

The simulator used was built in-house at MCC as part of an independent project. It is meant to be more

general than simply a simulation of the InfoSleuth system. However, because of its generality, we were

able to set the parameters and behaviors of the agents to closely match those of the agents in the InfoSleuth

system. Below we discuss the simulator, which also serves to describe our experimental set-up.

Processor Model At the lowest level of the simulator is a model of a processor, which is the fundamental

unit on which agents can run. While multiple agents can be put on the same processor to mimic realistic

resource sharing, for the experiments conducted here, all agents are assumed to be running on separate
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processors.

The processors’ main parameter is the speed, which is a relative measure of how fast they can compute.

This can be set on a processor-by-processor basis to mimic a non-homogeneous computing environment,

though the experiments shown here used identical settings for all processors.

Network Model Each processor has a model of its connection to other agents. While the simulator

allows an agent to have multiple network connections, the experiments used here assume each agent has

a single connection to the network. The main parameter for the network is its speed or bandwidth. For

these experiments all network connections have the same speed which we set to a fairly conservative value.

Although the effective bandwidth is very difficult to measure, we chose something that is on the high side

of megabit Ethernet connection: kilobytes per second.3 We also modeled the network latency time

to account for the overhead required independent of the message sizes. In these experiments the latency

was a very conservative seconds.

Hardware Reliability Both the processor and network connection models admit to being unreliable. We

assume an exponential distribution for the time to failure and a separate exponential distribution for the

time to repair. For all experiments except those concerning system robustness, the hardware was set to

be perfectly reliable. For the robustness experiments we varied the mean time to failure of the brokers’

processors only, where the means are shown in the experimental results section.

Common Agent Model For the three types of agents in the simulator (query, broker and resource), there

are some common parameters that are shared by all three, though not all agents use all of the parameters.

For agents that need to constantly check the existence of other agents, there is a ping interval defining the

maximum length of time it will allow to pass without any contact with another agent. This was set to

seconds. Additionally, there is a time-out period defined to limit the amount of time an agent will wait for

a reply from another agent. This too was set at seconds.

Resource Agent Model To mimic the presence of ontologies where different agents have data from dif-

ferent ontologies, each resource agent is defined to have a particular data domain. The total number of

distinct data domains in a given simulation run was one fourth of the total number of resource agents for all

but the robustness experiments below. Thus, a query over a particular data domain would have four separate

resources that satisfied the query. For the robustness experiments, each resource agent had its own unique

domain, which helps to track exactly how often a query was satisfactorily answered.

In addition to a data domain, the resource agent model defines the amount of data it has, the size and

complexity of the advertisement it sends to the broker, how quickly it can answer queries over its data as

a function of the size of its data, the complexity of the query being asked and the size of the resulting
3See http://www.isi.edu/lsam/publications/http-perf/#nets for some discussion of effective network

speeds.
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answer. Note that the size of the query answer is defined by how much data the query covers and the size

of the resource’s data. Aside from the query engine speed and the queries complexity factor, the resources

query answering speed will also be scaled by by the speed of the processor the agent is running on. For the

experiments in this paper, the base query answering speed of all resources was set to be second per

megabytes of data.

A resource agent will advertise their data to all of the brokers it is connected to. For the experiments

where resources were connected to only a single broker, the broker was chosen uniformly randomly from

among all the brokers in the system at start-up, to prevent any regular distribution pattern of data domains

over the brokers, which tended to skew some of our earlier experimental results. For the robustness ex-

periments, we used redundant advertising where the amount of redundancy was varied as discussed in the

results sub-section below.

Query Agent Model A query agent in the simulator serves only to put a load on the system. Each query

agent is independent and generates queries to a broker at times that are exponentially distributed. If the

query agent is connected to multiple brokers, it uniformly randomly chooses a broker on each query issued.

For our experiments, we used a single query agent connected to all the brokers in the system to represent

the overall system load on the brokers.

The querying of the brokers are done independently according to an exponential distribution, but upon

a reply from the brokers, the agent will query any matching resource agents that the broker returns. Thus,

the queries to the resource agents are correlated with the queries to the brokers.

Each query, whether to a broker or a resource agent, has its data domain, complexity and coverage

set randomly. The data domain is selected uniformly over all the available data domains (defined by the

resource agents) and will be used by the brokers to match to the resources which have advertised over that

domain.

The complexity of the query is a relative measure of how much time the broker or resource agent

will require to answer the query; more complex queries will require more processing time. A query with

complexity can be processed twice as fast a query with complexity . The complexity is randomly

generated according to bounded Gaussian distribution; we put bounds on the Gaussian to ensure we always

get a positive number. For all the experiments shown here, the complexity is set to be (i.e., mean of

and variance of ).

The coverage is only used by the resource agents and defines the size of the result of the query relative to

the amount of data a resource agent has. A query whose coverage is set to means that after the resource

agent processes the query, the size of the result will be one-tenth of the data the resource agent is defined

to have. This too is generated using a bounded Gaussian distribution, this time to ensure that values stay

between zero and one. For the experiments conducted here, the coverage used had a mean of and

variance of .
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Broker AgentModel A broker will accept advertisements and add them to its list of advertisements. Each

advertisement has a size and upon reception of the advertisement the memory consumption required by the

broker is incremented. The brokers also respond to queries from the query agent. There is a parameter that

defines the base speed of the reasoning engine which helps decide how long the broker will take to answer

a query. For all of the experiment here, this value is set to second per megabyte of advertisements it has

in its list of advertisements. This base time is scaled according to the relative complexity of the query and

the relative speed of the processor.

The size of the result to the query agent is a function of the number of resource agents that advertised

the same domain as contained in the query. For the experiments in this paper, a broker result is set to be

kilobytes per agent that matches the query.

Multi-brokering The multi-brokering behaviors in the simulator were tailored to mimic those of the

InfoSleuth system. In particular, is can simulate the effects of the various “follow options” and hop counts.

For all experiments here, the “all repositories” option is used. For those experiments where the brokers

communicate, since the broker network is fully connected, the hop-count was set to .

5.2.2 Simulation Results

In this section we present some results from our simulation experiments. First we show the inherent prob-

lems with single broker networks and how broker specialization compares to a system where there are

simply multiple replicated brokers, but where each broker is a replication of the others; i.e., all brokers

maintain complete knowledge of all other agents. The second set of experiments explores the scalability

of a multi-brokering system with the behavioral characteristics of the InfoSleuth brokers. Multi-brokering

imposes extra overhead due to the communication between the brokers, and we want to ensure that as the

number of agents in the system increases that this overhead does not degrade the overall performance. The

final set of experiments demonstrates how a multi-brokering system provides robustness. In this experiment,

brokers fail using an exponential distribution with varying means.

Each individual experiment was the simulation of hours of system execution time. Because the sim-

ulations are based upon pseudo-random inputs, we ran each set of experiments times and averaged the

results. This helped ensure that we were not reporting results from a particular anomalous pseudo-random

number sequence.

Single versus Multiple Brokers In this experiment was compared three different brokering strategies,

using eight different system query loads. Figure 14 shows the results of our experiments where there are

resource agents and brokers. By far, the worse performance is in the single broker arrangement. Because

there are resource agent advertisements in the single broker’s repository, it will take a minimum of

seconds to respond to a query. As Figure 14 shows, query rates faster than its processing time completely

saturates the broker. In contrast, having multiple brokers, divides the overall system load and thus yields
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Figure 14: Single brokering versus multiple brokering.

better response times.

Replication versus Specialization The replicated broker case in Figure 14 consists of brokers each

with identical copies of all resource agents’ advertisements. Thus, they still require a minimum of

seconds to process a query. This is an advantage over the single brokering case since it distributes the

query load across multiple agents. However, in the specialized broker case, each resource agent has only

one broker it has advertised to, so to provide an answer to a query, the brokers must communicate with

one another. As Figure 14 shows, for high query frequencies, the extra over-head in broker communication

outweighs any advantage gained by parallelizing the computation across multiple brokers. However, the

scale of Figure 14 masks the differences between the replicated and specialized cases. Figure 15 shows a

close-up of the comparison between the two for mean query intervals of and greater. Here, the gains in

computing the answers in parallel across multiple brokers outweighs the extra overhead involved with the

broker communication.

Figure 16 shows the same experiments as Figure 15 except that here there are only brokers in the

system, though still resource agents. This shows that even with a higher resource-to-broker ratio, spe-

cialization of the brokers helps.

Note that “specialized” in these simulation experiments simply means that not all resources have adver-

tised to all brokers. Thus, all brokers must still contact all other brokers to answer a query. In the InfoSleuth

system, brokers can advertise their capabilities to other brokers which means that a broker can know in

advance which brokers it can immediately rule out from a query. Though we did not conduct any simu-

lation experiments for this case, this sort of specialization would only help to improve the response times

provided that the extra time cost in reasoning over broker advertisements was less than the communication

time between the brokers.
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Figure 15: Replicated brokering versus specialized brokering with brokers and resource agents.
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Figure 16: Replicated brokering versus specialized brokering with brokers and resource agents.
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Scalability This set of simulation-based experiments varies the number of agents in the system, while

maintaining all other system parameters. We simulated systems with the following numbers of resource

agents: , , , , , , , , and . Since our focus is on the inter-agent communication

overhead, we needed to ensure that the broker agents’ local computations remained the same across this

range. Thus, we defined that each broker would, on average, have the advertisements for resources.

Thus the number of brokers for each of the above resource agent sizes are , , , , , , , , and

respectively.

Each resource agent’s advertisement size was set to megabyte and the processor speed and broker

reasoning engine speeds were set to require one second of processing time for each megabyte of advertise-

ments. Thus, on average, a broker will need seconds to compute the query answer based on its local

advertisements. This presents a theoretical lower bound on the response time in the multi-brokering system.

Note that if you simply wanted to have multiple brokers each with identical copies of all advertisements,

then the response times would definitely not scale well with the number of resource agents, since it will

take each broker one second per resource agent to answer a query or a total of seconds for the largest

case we look at here.

The metric of interest here is the average response time to the query agent from the brokers. Unlike

the InfoSleuth experiments which had some extra overhead for the processing and rendering of the result,

this simulation data is purely the time between when the query is issued to the broker and when the reply is

received from the broker.

Figure 17 shows the results of varying the number of agents in the system and for varying query fre-

quencies (“QF” is the mean time between queries.) If the overhead of communication presented an obstacle

to scalability, then one would expect the response times to get dramatically worse as the number of agents

(both brokers and resources) increased. However, as the data in Figure 17 shows, the response times tend

to level off, and certainly do not show any catastrophic behavior.

The results of this experiment shows that multi-brokering systems, despite the extra overhead, do scale

up nicely. With a multi-brokering system, the gains achieved by distributing the query processing exceed

the overhead incurred as the number of agents in the system increases.

Robustness In this set of experiments, we fixed the number of brokers and resources at and respec-

tively. The query frequency was fixed to have a mean query time of once every seconds to ensure that

the system was operating in a range that did not saturate it processing capabilities. The parameters we vary

are the mean failure time of the brokers and the amount of redundancy in the number of brokers that each

resource agent sends their advertised to. The mean failure rates used are , , , and

seconds. We vary the number of brokers each agent advertises to from to .

Table 5 shows the obvious result for the number of replies from the broker to the number of queries

asked of the broker (expressed as a percentage). Naturally, as the failure frequency goes up, the more likely

we are to contact a broker that does not respond. Aside from the variation due to the random nature of
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Figure 17: Scalability of broker specialization across a range of number of resource agents and system
query frequencies (QF).

Failure Advertisement Redundancy
Mean (Number of Brokers)
(secs.) 1 2 3 4 5

1000000 99.56% 97.37% 100.00% 99.14% 100.00%
3600 77.64% 70.71% 69.87% 61.26% 63.45%
1800 37.50% 44.40% 46.69% 44.64% 59.41%

900 34.05% 26.47% 17.87% 22.90% 16.79%

Table 5: Percentage of queries that brokers reply to.
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Failure Advertisement Redundancy
Mean (Number of Brokers)
(secs.) 1 2 3 4 5

1000000 100.00% 100.00% 100.00% 100.00% 100.00%
3600 75.00% 92.90% 92.22% 97.42% 100.00%
1800 75.86% 85.44% 95.58% 100.00% 100.00%
900 20.25% 76.19% 69.05% 86.67% 100.00%

Table 6: Robustness experiments: percentage of queries successfully answered.

the experiments, these percentages should be independent of the redundancy of the advertisements, since it

only measures whether a broker replies not whether it actually located an agent to satisfy the query.

The robustness of the system is evaluated by looking at only those queries for which the broker re-

sponded. In these cases we want look at the quality of the broker’s response. In this particular experiment

each resource has a unique data domain, so there is exactly one agent that should match each query. The

quantity of interest is the number of resources queried versus the number of broker replies that are received,

since this is directly correlated to the number of times the proper resource agent was located by the broker

network. As seen in the first row of Table 6, when the brokers are very unlikely to fail, the number of

resource agents queried will be identical to the number of broker replies (i.e., 100% of the queries answered

had found the matching resource agent.)

The last column shows that with complete redundancy, you can always find the agent if you get a reply at

all. In this case, the brokers have no real reason to communicate since all brokers know about all resources.

However, for the other cases where inter-broker communication is needed to answer the queries, you can

see the definite trend that the more redundancy there is, the more robust the system is to failures.

6 Related Work

There are several research projects and systems that address the issue of integrating heterogeneous systems.

These systems rely on some form of brokering or mediation to achieve semantic integration. We evaluate

two issues when comparing brokering in InfoSleuth to brokering in other systems – syntactic vs. semantic

brokering and single vs. multibroker architectures.

One area where brokering has been used extensively is within distributed object systems such as

CORBA [9, 20]. CORBA provides a framework in which distributed, heterogeneous objects can inter-

act. CORBA objects describe their interfaces to a broker (ORB), using a common interface description

language called IDL. When a CORBA object makes a call to another object, it determines the signature of

the method being invoked, and places a request to the ORB to locate an object with that signature. The ORB

looks through its list of interface descriptions (and possibly those of other related ORBs), and matches the

signature to some method in some object’s IDL description, and returns the matched object. The requesting

object can then invoke the method on the matched object.

DISCO [24] uses CORBA brokers to do their brokering. The CORBA Trading Object Service [20]
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provides mechanisms for incorporating some semantic brokering, however, they have not actually incorpo-

rated any reasoning. In fact the level of semantic brokering is equivalent to the look up of yellow pages in a

telephone book. The knowledge that can be expressed in a yellow page is a structured list of properties. It is

not possible to describe constraints such as range of data involved, relationships between input and output,

subsumption relationships between concepts, and correctness and completeness of data.

CORBA traders also implement multibrokering through internetworking among traders; we borrowed

some of their ideas on inter-broker search policies. CORBA’s traders are passive due to the lack of reasoning

power. This means that the federation of traders is always formed statically with a fixed topology. Our

peer-to-peer multibroker architecture allows broker consortium to evolve or self-organize depending on

the goal/objective of each individual broker. Only recently have commercial implementations of CORBA

traders been available (e.g., [10]). No information is available regarding the scalability and robustness of

any of the CORBA traders.

Different agent communication languages [23, 6] have developed special messages to send to a broker

agent, with a basic assumption of some underlying brokering process. KQML defines advertise messages,

as well as broker and recruit messages, which allow an agent to advertise its services and ask a broker

about other services. In these messages, the service is expected to be described in terms of a second

KQML message, possibly with wild cards. A match between a request and an agent takes place when the

agent’s advertisement unifies with the performative specified in the broker or recruit message. Again, this

implements a syntactic match, as the primary concern is matching the structure of the agent’s interface.

Syntactic brokering uses the structure or format of a task specification to match a requester with a

service provider. This involves using mainly syntactic properties such as object or method interfaces or

query/scripting languages to decide which service providers to recommend. For example, a process QA

may advertise that it takes its input according to SQL 2.0 syntax. Any request for SQL 2.0 query processing

could then be directed to QA. Syntactic brokering functions are sometimes also incorporated into commer-

cial agent frameworks such as Zeus [19]. One basic, but problematic assumption that syntactic brokering

systems such as the CORBA ORB make is that the definition of the procedure or method interface uniquely

defines its semantics. That is, ORBs do not check to see if the local method definition that conforms to the

interface actually does what the caller intended. Thus, semantic mismatches are possible even when there

is a syntactic match between a requester and a provider.

Several information retrieval systems use semantic brokering with respect to information sources. These

systems include SIMS [1], TSIMMIS [17], InfoMaster [8] and Information Manifold [14, 15]. They all

evolved from research in multidatabases where a canonical model (global ontology) is used. The way these

systems work is to define a common vocabulary, or ontology, to define the objects in their information

domain. Individual information sources that contain these objects then describe constraints on the objects

that they can provide, in terms of this common vocabulary. The broker then uses these constraints to

determine how to process queries from users that involve one or more of these resources. The capabilities
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of these systems are similar to InfoSleuth’s in that they reason over the information content of the agents

and constraints over that content; however, their idea of a service ontology only encompasses information

and not any other agent capabilities. Thus, these systems implicitly do syntactic brokering when matching

resources, as they expect that each resource supports a single underlying query language.

The SHADE project [16, 12, 13] at Lockheed Palo Alto Research Labs extended the notion of syntactic

brokering by including information about services represented using KIF, a knowledge interchange method

that represents first-order logic expressions. Queries concerning agents were matched with these adver-

tisements using unification. Additionally, SHADE provides some facility to broker over constraints on the

values of the data, similar to the semantic brokering over data that we have done in InfoSleuth. However, we

have not found a clear description of how this facility works. Since SHADE relies on a shared ontology to

represent data, Kuokka and Harada also propose a companion matchmaker named COINS that uses TF/IDF

(term frequency / inverse document frequency) filtering to match document characteristics to free text [13].

The LARKS matchmaking system [22] in RETSINA [21, 4, 5], has attempted to address the issue of se-

mantic brokering by providing input-output descriptors and term frequency measures to determine whether

or not a semantic match occurs between a requested service and a service provider. RETSINA matchmakers

describe the semantics of their offered services both in terms of signatures (inputs and outputs), but also

in terms of the relationships between the inputs and the outputs. They also use TF/IDF techniques to cate-

gorize the semantic relevance of a query to an advertisement. The term frequency measures are similar to

those used in COINS. The matching process in RESTINA is structured such that users can select a trade-off

between performance verses quality of matching.

In addition, there are a few general papers of interest on brokering and agent architectures. These

include a second developed agent framework similar to InfoSleuth and its approach to brokering (though

different in other aspects) in [3] and some general discussions in information agents [13, 11].

7 Conclusions

The brokering function matches specific requests for services with providers that can satisfy those requests.

Syntactic brokering does this match based on purely syntactic characteristics of the requested service such

as method signatures, query languages or input forms. Semantic brokering takes into account the nature and

characteristics of the requested service - what functions do you want to perform and what data do you want

to access. A good brokering system, such as InfoSleuth’s, should implement both syntactic and semantic

brokering.

We described our approach to defining a service ontology - a shared vocabulary that agents can use to

describe themselves to the broker. Advertising and querying is done in terms of logical expressions and

constraint programming. This enables the broker to both access stored information gleaned from agent

advertisements and reason over that information when determining which agents provide a set of requested

services.
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A single broker can accomplish much in the way of recommending resources and assisting in maintain-

ing a dynamic set of distributed computing and information resources. However, a single broker architecture

presents a barrier to scalability and robust operation. We presented a multibrokering peer-to-peer architec-

ture with brokers belonging to different consortia. Brokers maintain up-to-date information about other

brokers as well as other agents, couched in terms of a multibroker service ontology. We described how ro-

bust multibrokering can be implemented, especially in term of how broker discovers other brokers and how

it implements inter-broker searches. We showed empirically the feasibility of multibrokering, and explored

its effectiveness. Our preliminary experiments were encouraging in that they showed the feasibility of and

hinted at the scalability of the multibrokering system.

Because it was impractical to study multibrokering in very large agent-based systems, we made use of

an agent simulator developed here at MCC to analyze the robustness and scalability of our multibroker-

ing approach as the agent community grows in size. We analyzed the scaling behavior of our specialized

brokering approach and showed its superior scalability with respect to replicated brokering systems. We

experimented with various topologies and connectivity properties of the brokers, enabling us to determine

in the future what the most efficient tradeoff is between connectivity and brokering speed and robustness.

However, we do recognize the drawbacks of a simulation-based approach to such experimentation as well,

including the need to validate the behavior of the simulator against the real-life system (whether imple-

mented or not), and the accuracy of the settings of the myriad of simulation parameters such that the model

faithfully represents the real-life components. Our confidence in our simulator and our configuration set-

tings should continue to grow as we gain more simulation experience.
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